
Information and Software Technology 134 (2021) 106560

Available online 20 February 2021
0950-5849/© 2021 Elsevier B.V. All rights reserved.

A process for analysing the energy efficiency of software

Javier Mancebo *, Félix García , Coral Calero
Alarcos Research Group, Institute of Technology and Information Systems, University of Castilla-La Mancha, Ciudad Real, Spain

A R T I C L E I N F O

Keywords:
Software sustainability
Green software
Software consumption measurement
Energy consumption measurement process
Energy efficiency

A B S T R A C T

Context: It is essential to be aware of the energy efficiency of software when it is running, so that it can be
improved; to that end, energy consumption measurements need to be carried out. To ensure that these mea
surements are as reliable as possible, it is recommended that a well-defined process be followed.
Objective: To identify how the process for analysing the energy efficiency of software should be carried out
(including the definition of the software to be evaluated, the selection of measuring instruments, the analysis and
the presentation of results, etc.), in an endeavour to improve the reliability and consistency of the information
obtained regarding energy efficiency.
Method: An analysis of related work was carried out, to extract some good practices in measuring energy con
sumption; based on our experience, a process to analyse the energy efficiency of the software has been defined.
Results: We have defined a process to analyse the energy efficiency of the software. We describe this process
through a set of phases that covers all the steps needed to carry out a correct analysis of the energy consumption
of the software executed. Moreover, this process was validated with two different studies using different mea
surement instruments (one with a hardware-based approach and one with a software-based approach) to ensure
its applicability to all types of studies with software energy consumption measurement.
Conclusion: The steps to be followed to analyse the energy efficiency of the software need to be established. A new
process has hence been defined to improve the reliability and consistency of the measurements. Furthermore, this
process facilitates the replicability and comparison of the studies carried out.

1. Introduction

The expansion of the information and communication technology
(ICT) sector in recent years has led to a remarkable growth in the
environmental impact brought about by technology. According to a
report published by Huawei Technologies [1], ICT energy consumption
in 2018 already represented about 9% of total global energy consump
tion. Moreover, estimates indicate that global ICT energy use could
exceed 20% of total energy and could emit up to 5.5% of the world’s
carbon emissions by 2025. This would have a large negative impact on
the environment [2,3].

For that reason, an increasing number of green ICT solutions have
emerged. The proposed solutions have focused mainly on improvements
in hardware, with the aim of reducing the environmental impact that it
generates [4,5]. In recent years, however, software has also been iden
tified as having a negative impact on the environment and recent
research has focused on the appropriate use of software resources, which
has led to the development of more sustainable and environmentally

friendly software [6,7]. Dick et al. [8], define software as “sustainable”
where the direct and indirect negative impact resulting from its devel
opment, deployment and usage is minimal and/or has a positive effect
on sustainable development as regards the economy, society, humans
and the environment.

In the summary of Calero et al.’s proposal on Green and Sustainable
Software [6], the authors assert that Green and Sustainable Software is a
major research topic that has been very active in recent years. They also
highlight that Green Software promotes the improvement of the energy
efficiency of software, minimising its environmental impact and
potentially having a positive impact with respect to the economy and
humans [7].

In order to develop more sustainable software and limit any negative
impacts that it may bring about, there is a need for methods that will
measure and/or estimate the energy consumption that is induced by the
software when it is running [9,10]. The measuring instruments for the
analysis of software energy consumption can be classified in the
following manner [10]:

* Corresponding author.
E-mail addresses: Javier.Mancebo@uclm.es (J. Mancebo), Felix.Garcia@uclm.es (F. García), Coral.Calero@uclm.es (C. Calero).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2021.106560
Received 26 March 2020; Received in revised form 19 January 2021; Accepted 18 February 2021

mailto:Javier.Mancebo@uclm.es
mailto:Felix.Garcia@uclm.es
mailto:Coral.Calero@uclm.es
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2021.106560
https://doi.org/10.1016/j.infsof.2021.106560
https://doi.org/10.1016/j.infsof.2021.106560
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106560&domain=pdf

Information and Software Technology 134 (2021) 106560

2

• Software-based approach: software tools estimate the power
consumed by the hardware when the software is executed. The
adoption of this approach does not require much effort and hence is
cheaper. Measurements are, however, subject to some error rates
because they provide estimates. Some examples of software tools
that adopt this approach are PowerAPI [11] or Joulemeter [12].

• Hardware-based approach: devices that use physical energy meters
connected to PC hardware devices. This approach is more promising
than the software-based one, because it allows for accurate mea
surements of the energy consumed by a computer. It should be said,
however, that these devices are relatively more expensive and as
such not available to everyone. EET [13] or Watts Up? [14] are ex
amples of measuring instruments that follow the hardware-based
approach.

Several empirical experiments on software energy consumption
using either of the two approaches described to perform the measure
ments are presented in the available literature. Capra et al. analyse en
ergy efficiency on a set of 63 open-source applications. Sahin et al. [15],
using a hardware-based approach, investigate the energy impact of
using a set of fifteen software design patterns. Hindle [16] investigates
the impact of software change on energy consumption, along with the
relationship to software metrics. For this purpose, three applications
were chosen (Firefox, Vuze and rTorrent) and, for each application, a set
of different releases was selected. In [17], the authors used a hardware
device to measure the energy consumption for different software prod
ucts such as word processors, web browsers, or database systems. They
thereby analysed different software architectures. In a software-based
approach, using the PowerAPI library, Noureddine et al. [18] analyse
the impact of the energy of various programming languages with
different algorithms (recursive vs. iterative). In other work, such as [14],
the authors combine both approaches to measuring energy consumption
and seek to compare the energy consumption of a software product in
different versions and to explain the variations in energy consumption
brought about by differences at the level of software architecture.

Analysing the above-mentioned studies, it can be observed that each
author applies their own methodology - or does not present any method -
to carry out the measurements of energy consumption. Consequently, it
is difficult to compare the results obtained in different pieces of work.
Another problem of not following a defined process is the difficulty of
replicating energy consumption measurements.

To solve this problem, it is necessary to establish a method that will
serve as a guide for carrying out software energy consumption mea
surements. Such method should start with the design of the study and
continue right through to the analysis and reporting of the results ob
tained, as well as taking account of the particularities of the field of
software energy consumption measurement. As a result of such an
approach, it is to be expected that a greater control of the measurements
made to ensure the reliability, consistency and coherence of the mea
surements would be achieved, which in turn would support the repli
cation of the studies carried out [19,20].

Considering the importance of a defined method that could help
researchers to analyse the energy efficiency of software and the real
need that is apparent from an analysis and use of existing measurement
proposals, we have defined a specific process that integrates all the ac
tivities necessary to measure and analyse the energy consumption of the
software evaluated.

This process is mainly related to the technical sustainability dimen
sion, since the main objective of the process is to define the steps to be
followed to evaluate and improve the energy efficiency of the software.
In addition, the process affects indirectly to the rest of the dimensions of
sustainability by means of the relationship with the technical dimension.

Our proposal is composed of seven different phases which cover the
main steps to be performed, from the measurement of energy con
sumption right through to the analysis of the results, including actions
such as defining the scope of the study, details on how to conduct valid

and reliable measurements and how the results obtained should be re
ported. To define our process, we have followed the method engineering
approach [21], using the SPEM specification [22] and the EPF Composer
tool to model the defined process.

We organize the content of the paper as follows: firstly, we present
the software measurement frameworks and standards and compare
them to the process that we propose. Subsequently, the process proposed
to help researchers carry out energy consumption measurements of
software is detailed (Section 3). Thereafter, in Section 4, two application
examples in which the process described has been applied are presented.
Finally, Section 5 sets out the conclusions of this work and presents our
proposals for complementary research activities.

2. Related work

As described in the introduction, measuring the energy consumed by
software is becoming increasingly important in the effort to improve
software sustainability and as such it is necessary to define a process that
will ensure the rigour and consistency of studies using software energy
consumption measurements.

Different approaches that could be useful for this purpose can be
found in the existing literature. We describe the proposals that already
exist, divided into two subsections. In the first of these, we present the
software measurement frameworks and standards which aim to provide
guidelines for carrying out the measurement process effectively and
systematically, based on the objectives defined. In the second, we give
an overview of the approaches put forward for carrying out a mea
surement of the power consumed by the software. Finally, we include a
comparison between the methodologies and standards mentioned and
our proposed process.

2.1. Measurement methodologies and standards

The Goal/Question/Metric (GQM) method proposed by Basili and
Weiss [23] establishes guidelines to define a measurement program: the
context, the objectives and the measurement process plan. Guidelines on
data collection, analysis, interpretation of results and identification of
potential improvements are also provided. GQM is a method that allows
the objectives of measurement to be refined into a set of quantifiable
questions that are used to identify the data to be collected to support the
decision-making process. Measured data allow us to answer the ques
tions and then to analyse whether the goals have been attained [24,25].
The GQM method is composed of four phases [26]:

1 The Planning phase: in this phase, the necessary information is
gathered and a project for the application of measurements is
defined, characterised and planned, resulting in a project plan that
documents the procedures, schedules and objectives of a measure
ment program.

2 The Definition phase: during which the measurement program is
defined (goal, questions, metrics and hypotheses are defined) and
documented.

3 The Data Collection phase: during this phase, the data collected from
the measurements are defined, filled in and stored.

4 The Interpretation phase: during which the data collected is pro
cessed and the measurements then used to answer the questions,
aiming to respond to the goal established.

Furthermore, there are many proposals in the literature for exten
sions to the GQM method. These include Goal-Driven Software Mea
surement (GDSM) [27], which provides an extension to the Planning
phase of the GQM method, improving the way measurements are
derived from business objectives and providing useful templates that
help define objectives, indicators, measurements, etc. This extension of
GQM is called Goal Question Indicator Metric (GQ(I)M) and provides
explicit support for indicators, ensuring that a consistent collection of

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

3

metrics is available to construct an indicator. GQ(I)M also provides
additional elements to ensure consistent interpretation of the indicator
[28].

Another methodology for software measurement is PSM (Practical
Software Measurement) [29], which aims to provide a set of good
practices and guidelines for software measurement. It is based on proven
measurement principles derived from actual experience in government
and industry projects. PSM proposes a model of the measurement pro
cess, which is divided into four main activities: Plan measurement,
Perform measurement, Evaluate measurement, and Establish and Sus
tain commitment. In summary, the PSM framework provides a system
atic approach to planning and implementing the software measurement
and analysis process.

The international standard ISO/IEC/IEEE 15939 [30] is based on
PSM. This standard identifies the activities and tasks which are neces
sary to successfully identify, define, select, apply and improve software
measurement within a generic project or within the measurement
organisation structure. According to this standard, the main objective of
the measurement process is to collect, analyse and provide relevant data
regarding the implemented products and processes, in the quest to
manage the processes and to demonstrate objectively the quality of
products, services and processes. The software measurement process
defined by ISO/IEC/IEEE 159339 consists of four activities that are
similar to those in the framework.

Although these software measurement frameworks provide guide
lines for defining and implementing software measurement programs,
none of the above-mentioned methodological frameworks focuses on
measuring the energy efficiency of software, so these frameworks cannot
be fully adopted for our purposes.

2.2. Energy measurement methodologies

With regard to works that present guidelines for energy measure
ment in software, to the best of our knowledge the only one of relevance
is “Green Mining Methodology” [16]. This methodology describes how
to conduct experiments using energy consumption measurements and is
composed of seven activities: (1) choose the software product and the
context in which it should be checked, (2) decide the types of data that
will be registered, (3) choose a set of versions of the software, (4)
develop the test cases that are to be run, (5) configure the testing
ground, (6) carry out the measurements for each version and gather the
data registered, and (7) analyse the results. The main defect in this
methodology is that it does not provide any protocol or good practices
regarding how to carry out the measurement in a way that is valid and
reliable. For this reason, Jagroep, et al. [14] present a measurement
protocol, in which an extension of activity (6) of "Green Mining" is
performed, detailing the specific tasks to be carried out. These tasks
include: (a) run the test within the testbed and record the instrumented
data, (b) compile and store the recorded data, and (c) clean up the test
and testbed.

The above works present some guidelines for carrying out mea
surements of the energy consumption of software. They do not, how
ever, provide details on how to carry out a full process for analysing the
energy efficiency of software.

2.3. Comparison of measurement methodologies

As mentioned in the Introduction, before developing our specific
process for the measurement of the energy consumption of the software,
an analysis of existing proposals was conducted and each one of them
was tested to see whether they could be adapted to this type of
measurements.

Firstly, generic methodologies for the measurement of software en
ergy consumption were reviewed, such as the PSM [29] or the GQM
method [26], among others. This type of generic methodologies pro
vided guidelines for conducting the measurement of the energy

consumption of software, and informed our process for the same.
Nevertheless, these methods were not wholly suitable due to the par
ticularities that exist in the measurement of the energy efficiency of
software, such as the tools required to make these measurements or the
definition of the scenarios in which certain factors have to be taken into
account, including the consumption of the operating system or the
running of other applications in the background, which can affect the
accuracy of the measurement.

Once the use of generic methodologies had been discarded, our
studies turned to the specific methodologies for the measuring of the
power consumed by the software. With this focus, we identified the
Green Mining methodology [16] and its extension proposed by Jagroep
et al. [14], which did present at a high level a range of activities and
standards for making measurements of the energy consumption of
software. However, these authors did not provide details on how to
achieve the full process, in other words, how to not only conduct the
measurement but also how the results obtained should be analysed and
reported.

From an analysis and use of the existing work, we can conclude that
there is a lack of guidelines to help analyse the energy consumption of
software. Bearing this in mind, we propose a new process for measuring
and reporting energy consumption of software products, to improve the
results obtained from the measurements. Table 1 summarises the main
aspects of the approaches mentioned above, comparing them with our
proposed process.

As explained above and shown in Table 1, none of the methodologies
or standards mentioned are completely adapted to carry out the entire
process of measuring the energy consumption of software, from its
planning through to its analysis and reporting. It is for this reason that
we consider it necessary to define a process for use by researchers when
analysing the energy consumption of software when it is running. Our
proposal includes guidelines that describe the entire process of per
forming measurements, including the preparation and configuration of
the environment and software to be measured, the steps to perform the
measurement and analysis of the data obtained, and how to report and
prepare the laboratory packages so that they can be reproduced.

3. Process for analysing the energy efficiency of the software

In this section, we will describe the proposed process for analysing
the energy consumed by the software when it is running. This process
consists of seven phases (see Fig. 1), which are divided into different
activities with input and output devices.

The phases of the process are based on the grouping of the different
activities defined in the Green Mining Methodology [16]. In addition, to
define some aspects or artefacts of the process, we have based ourselves
on well-known approaches to software measurement and good practices
related to green software proposed by other authors.

We use the SPEM 2.0 [22] and the EPF composer version 1.5.2. to
describe the process employed to analyse the energy consumption.

The description of the process includes the participant roles, phases
and activities (with inputs, outputs and guidelines). A more detailed and
comprehensive version of the process and its elements is available at
https://alarcos.esi.uclm.es/FEETINGS/.

3.1. Roles

In this subsection, we present the roles that are involved in the
different phases of the process. We have identified four different roles:
Client, Measurement Analyst, Measurement Performer and Data Ana
lyst, all of which are described in Table 2. A participating person in the
process can play one or several of these roles.

Moreover, and in line with the SPEM guide, roles can operate in two
different ways, depending on the relationship between an activity and
the role: Primary Performs (PP), which refers to the roles that participate
in the realisation of the activity; and Additionally Performs (AP), which

J. Mancebo et al.

https://alarcos.esi.uclm.es/FEETINGS/

Information and Software Technology 134 (2021) 106560

4

are the roles that must be informed or which are in some way interested
in the realisation of the activity.

3.2. Phases

Our process is intended to be performed iteratively, so the phases are
interrelated to each other. The initial phase focuses primarily on the
definition of the requirements and the software system to be evaluated.
The next two phases focus on the configuration and preparation of the
measurement environment. In phase four, energy consumption mea
surement activities are carried out. Finally, the last phases are the
analysis and reporting of the data obtained. In the following subsections,
we will describe in detail each of the phases, which will be represented
with the diagrams obtained from the EPF Composer tool.

3.2.1. Phase I: scope definition
The main goal of this phase is to obtain a complete specification of

the requirements for the evaluation of energy efficiency. Moreover, the
software to be analysed must be defined. To achieve this, four different
activities are undertaken in this phase, with the inputs and outputs
shown in Fig. 2. The figures of the process phases have been obtained
with the EPF Composer tool.

The first activity of this phase is to elicit the requirements (Activity
A1.1) for the analysis of software energy consumption. To do this, the
Client provides the Measurement Analyst with information about the
software to be evaluated. In addition, all the requirements to carry out
the energy consumption measurement must be detailed. This informa
tion must be documented in the Requirements Specification.

Once the Client has provided all the necessary information, the
Measurement Analyst performs the definition of the objective (Activity
A1.2) and chooses the collection of all the entities that satisfy the
determined purpose, known as Software Entity Class [31]. We suggest
using the recommendations of Wohlin et al. [19], based on the appli
cation of the Goal/Question/Metric (GQM) method to correctly define
the Goal and the Software Entity Class.

After choosing the Software Entity Class, it is necessary to select the
Software Entity [31], which is the software that is to be characterised by
measuring its attributes. This corresponds to the third activity in this
phase (Activity A1.3). It is essential to check that all the selected Soft
ware Entity are available and can be installed and/or run on the Device
Under Test (DUT). In the effort to facilitate the selection of the Software
Entity, a template is included and can be downloaded from the website
indicated.

Finally, the fourth activity is the development of test cases to execute
and measure energy consumption (Activity A1.4). Based on the Software
Entities defined in the previous activity, a representative test case must
be built that will exercise the necessary functionality of the software
product whose energy consumption is to be measured. The test case is
expected to be independent and should not affect the next test case [16].
A test case could simulate user input, focus on specific software tasks, or

Table 1
Comparison of the proposals.

GQM GQ(I)M
GDSM

PSM ISO/IEC/IEEE
15939

Green Mining
Metodology

Jagroep et al.
proposal

Our
proposal

Guidelines for the software measurement process X X X X X X X
Guidelines for the process of analysing software energy

efficiency
X X X

Specific guidelines for carrying out energy measurement
of software

X X

Specific guidelines for analysing the data obtained from
measurement

X X X

Specific guidelines for reporting measurement results X X X

Fig. 1. Process for evaluating the energy efficiency of the software.

Table 2
Roles participating in the process.

Role name Description

Client (C) They are interested in the results obtained by measuring
the energy consumption of the selected software. They are
responsible for providing information about the software
to be evaluated and the requirements needed to carry out
the energy consumption measurement.

Measurement Analyst
(MA)

The person responsible for defining in detail the scope of
measurements and the configuration of the measurement
environment. They are also in charge of reporting and
documenting the results obtained.

Measurement
Performer (MP)

Prepares the measurement environment and sets up the
testbed. Furthermore, this role is responsible for carrying
out the energy consumption measurements in the selected
environment.

Data Analyst (DA) The person responsible for processing and analysing the
data extracted from the measuring device and converting
it into software energy consumption information.

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

5

on the execution of an algorithm. Moreover, if several Software Entities
have been chosen, the defined test cases should be able to be tested in all
Software Entities. This activity is very important, because if the test
cases are not well-defined, it can cause problems in the analysis of en
ergy consumption of the software product.

The main outputs that we obtain at the end of this phase are the
specification of the context in which the measurements will be carried
out, the Software Entity, and the test cases that will measure the energy
consumption.

Table 3 shows the involvement of each role in each activity of this
phase.

3.2.2. Phase II: measurement environment setting
The second phase has four activities, which are shown in Fig. 3. The

purpose of this phase is the definition of the measurement environment
that will be used to satisfy the goal defined in the first phase.

The first activity carried out in this phase is the selection of the
measuring instrument (Activity A2.1). The measuring instrument is used
to perform the power consumption measurements of the software ana
lysed. This measuring instrument may be either a hardware device or a
software tool [32]. Depending on whether we want to obtain very

precise measurements, and on the availability of the measuring instru
ment, we will follow one of two approaches. On the one hand, the
software-based approaches estimate the power consumption of a system
at run time, which indicates that measurements are subject to some error
rates. In addition, software measurement tools have the ability to obtain
the consumed energy at different levels of granularity, i.e., this type of
tool allows us to know the energy consumed by an application, a process
or a method [9,12]. On the other hand, we have the hardware-based
approaches, which use physical power meters. This approach is much
more accurate than software tools in measuring energy consumption.
Hardware devices provide power readings at low frequencies, thus
increasing the reliability of the measurements, but also increasing
post-processing time and effort [9,13].

The second activity in this phase consists of defining the specifica
tions that the Device Under Test (DUT) must have (Activity A2.2). The
test cases defined in Activity A1.4 will be executed in the selected DUT in
order to carry out the energy consumption measurements. To choose the
right DUT, we should first consider the features of the Software Entity, as
it must be possible to install and run it on the DUT. Moreover, depending
on the results we want to obtain, the DUT will necessarily have different
specifications. For example, if we want the results obtained to be more
general, we must choose a DUT without special processing or storage
capabilities and with a conventional configuration. However, if we want
to know the energy consumption in a specific environment where the
software will usually be executed, we must simulate this environment by
configuring the DUT to be as close as possible to it.

The next step is to decide on the set of measures to be used for the
analysis (Activity A2.3). The main measure of interest is obviously the
energy consumption (EC), which is obtained by the measuring instru
ment. Sometimes it is necessary to recover other measures, however,
such as the performance of certain hardware components or different
kinds of measurements that are necessary for further analysis; e.g. in
formation about the executed source code (Total Lines of Code or
Complexity).

The fourth activity is to check that no other software is running in the
background, as well as to interrupt all services and processes that may

Fig. 2. Phase I: Scope definition.

Table 3
Roles and their responsibilities in Phase I.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A1.1 Elicitation
of
requirements

PP AP

A1.2 Define the
goal

PP

A1.3 Choose a
Software Entity

PP

A1.4
Development
of Test Cases

PP

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

6

affect the baseline measurement of consumption (Activity A2.4).
Finally, the fifth activity is to obtain baseline energy consumption

(Activity A2.5). The baseline measurement determines the idle energy
consumption for the DUT that is used. As the idle energy consumption
depends mainly on the hardware used, this value must be determined
separately for each DUT used, by carrying out measurements while the
DUT is running without any active software [33]. The baseline energy
consumption allows us to calculate the energy consumption induced by
the execution of the selected test cases, under the assumption that the
increase in the energy consumed by the DUT depends exclusively on
running the Software Entity under test.

Table 4 shows the roles that have participated in this phase,
following the levels of relationships between activities and roles that
were explained in the previous section.

3.2.3. Phase III: measurement environment preparation
Phase III focuses on the preparation of the energy consumption

measurements to be performed and on the configuration of the mea
surement environment that was defined in the second phase. This phase
is composed of three activities, which are summarized in Fig. 4.

The first step (Activity A3.1) before starting the energy consumption
measurements is to check that no other software is running in the
background. After that, we must interrupt any services and processes
that are not required by the software under test, seeking to minimise the
effect they may have on the power consumption of the DUT (for
example, the automatic update service or virus scans).

The next activity (Activity A3.2) is to determine the number of times
each measurement should be repeated. We consider a measurement to
be a set of energy consumption samples from a single test case run. There
is no exact and correct number of repetitions to be measured. The choice
of this value depends on the objective we have defined, as well as on the
resources available. Some authors [17] recommend that, for measure
ments of software energy consumption in a controlled environment, 30
measurements are usually a sufficient sample size for an analysis of each
of the test cases devised, as the sampling distribution will tend to be
normal.

The last activity (Activity A3.3) in the preparation of the measure
ment environment is the configuration of the testbed. The Software
Entity and the services required in the DUT need to be installed. Once
the measurements for one of the Software Entities are completed, the
DUT is restored, such that it returns to its initial state. This procedure is
repeated for the different Software Entities that are going to be assessed.
In this activity, the selected Software Entity must also be prepared, so
that it can execute the test cases defined.

Table 5 shows the roles that have participated in the Measurement
Environment Preparation phase.

3.2.4. Phase IV: perform the measurements
During this phase, energy consumption measurements will be carried

out. The fourth phase consists of only two activities, as shown in Fig. 5.
Both activities are an iteration, as these nested activities can be repeated
more than once; indeed, they will be repeated as many times as test cases

Fig. 3. Phase II: Measurement environment setting.

Table 4
Roles and their responsibilities in Phase II.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A2.1 Select a
measuring
instrument

PP

A2.2 Define
specifications of
the DUT

PP

A2.3 Select a set of
the measures
provided by
measuring
instruments

PP

A2.4. Close
unnecessary
software
applications and
processes

PA PP

A2.5 Obtain the
baseline energy
consumption of
the DUT

PA PP

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

7

were defined in the first phase. Measuring the energy consumed by the
selected Software Entities is the first activity of this phase (Activity
A4.1). Once the measurement is completed, the test bed should be
cleaned, to avoid affecting the power consumption when another test
case is run.

After that, it is time to collect the raw energy consumption data taken
from the measuring instrument (Activity A4.2). Later, the data obtained
will be processed to make its analysis easier. When storing the results of
each test, the relevant information such as the details of the DUT should
be recorded, as should the definition of the test cases, the current
configuration, the start and end time, or the power monitor trace itself.

In Phase IV, only the role of Measurement Performer participates,
performing both activities as primary performer. Table 6 summarizes
this information.

3.2.5. Phase V: test case data analysis
From this phase onwards begins the analysis of the energy con

sumption data obtained by the measuring instrument. The main goal of
Phase V is the processing and analysis of the energy consumption data of
each of the test cases that were defined in the first phase. This phase is
composed of two different activities, which are summarised in Fig. 6.

The first activity focuses on the preparation of the raw data obtained
by the measuring instrument (Activity A5.1). The steps to be performed
in this activity depend on the source of the data, but it is crucial to
achieve a transformation of the raw data into useful information for

performing an analysis. This process of data transformation is known as
Data Wrangling. The most outstanding tasks to be performed in Data
Wrangling, according to Kandel, S. et al., [34] are:

Fig. 4. Phase III: Measurement environment preparation.

Table 5
Roles and their responsibilities in Phase III.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A3.1 Close
unnecessary
software
applications and
processes

PP

A3.2 Determine
number of
repetitions of
measurements

AP PP

A3.3 Configure the
testbed

PP

Fig. 5. Phase IV: Perform the measurements.

Table 6
Roles and their responsibilities in Phase IV.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A4.1 Measure
the energy
consumed

PP

A4.2 Collect the
raw data

PP

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

8

• Data formatting: reformatting and integrating data from different
sources so that they can be analysed correctly.

• Correcting erroneous values: Once the data has been formatted, data
preparation begins. Data preparation includes the detection of out
liers, the imputation of missing values and the resolution of duplicate
records. For the identification of possible outliers that may be pre
sent in the samples of the measurements, we recommend the use of
robust parametric methods such as the median of the absolute de
viations from the median (MADN) [35,36].

• Validating the measurements: check that each of the measurements
performed is correct. To find unusual measurements, you can use the
interquartile range method (IQR). With this method, all values that
fall below Q1 - 1.5*IQR or above Q3 + 1.5*IQR, where Qi is the
quartile, are considered extraneous or incorrect. Another method of
identifying incorrect measurements is to use a confidence interval. A
problem inherent in defining a confidence interval, however, is that
it is necessary to have made a large number of measurements
beforehand.

The next step to be performed, once the data have been processed, is
the statistical analysis of the values obtained from the measurements of
the defined test cases (Activity A5.2). To carry out the analysis, the
descriptive statistics for each test case analysed need to be calculated. To
obtain the most complete information available on energy consumption,
we suggest the calculation of the following descriptive statistics: on the
one hand, standard descriptive statistics (maximum and minimum
value, range, mean, standard deviation, variance or interquartile range)
and, on the other hand, the robust descriptive statistics such as median,
trimmed mean, winsorised mean or median absolute deviation. It is not
compulsory to calculate all of the descriptive statistics mentioned. We
need choose only those that adapt to the statistical analysis that we are
going to carry out.

Table 7 shows the roles that have participated in this phase,
following the levels of relationship between the activities and the roles
identified in SPEM.

3.2.6. Phase VI: software entity data analysis
Once we have analysed the energy consumption data of the test

cases, we will be able to determine how much energy was consumed

when the Software Entity was executed in the DUT. As a result of this
phase, we will carry out an analysis of the information on energy con
sumption, based on the goal defined at the beginning of the process of
measuring the energy efficiency of a software. To that end, there are two
activities in this phase, which are summarised in Fig. 7.

The first activity in this phase consists of calculating the energy
consumed by the execution of the Software Entity (Activity A6.1). As
mentioned above, the software energy consumption depends mainly on
the DUT used. Hence, to calculate the energy required for the running of
the software, it is necessary to subtract the baseline energy consumption
of the DUT (Activity A2.4) from the average energy of the Software
Entity measurements. Before we can subtract the baseline energy con
sumption from the DUT, we must adjust it to the software measurement
performed. The adjusted baseline energy consumption is calculated by
dividing the average energy of the baseline by the average duration of
the baseline, and multiplying it by the average duration of the mea
surement:

Adjusted Baseline Energy Consumption =
EC Baseline
T Baseline

∗T Measurement

Fig. 6. Phase V: Test case data analysis.

Table 7
Roles and their responsibilities in Phase V.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A5.1 Prepare and
describe the raw
data to be
analysed

PP

A5.2 Statistical
analysis of test
case
measurement

PP

Fig. 7. Phase VI: Software entity data analysis.

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

9

The task of subtracting the baseline energy consumption of the DUT
from the average energy of the Software Entity’s measurements may not
be performed if we provide relative information on energy consumption.
That is, if we classify or sort according to the energy consumptions of
each scenario that has been measured in the same DUT, all the results
will have been equally affected by the baseline energy, and the classi
fication will not vary.

The last activity of this phase deals with interpreting the data of the
energy consumed by the Software Entity analysed and with establishing
some conclusions (Activity A6.7). As a result of this activity, information
is obtained on energy efficiency in response to the objective defined. It is
essential to have fulfilled all the requirements proposed by the Client at
the beginning of the process if the objective is to be completely satisfied.

The involvement of a Data Analyst and the participation of the
Measurement Analyst are required in performing the tasks of analysing
the energy consumption of the selected Software Entity. In addition, and
as with the previous phases, in Table 8 we show the implication of each
role in each activity, using the SPEM relationship levels.

3.2.7. Phase VII: reporting the results
Finally, the last phase is about documenting the study performed,

describing the entire process followed, along with the results on the
energy consumption of the software that had been extracted. Fig. 8
contains all the activities, inputs and outputs of this phase.

The first activity of this phase focuses on the development of a lab
oratory package (LP) intending to achieve repeatability of the experi
ment performed (Activity A7.1). The main objective of LPs is to be an
instrument for supporting knowledge transfer, as well as for conducting
replications; they should support all activities in the experimental pro
cess, and not only the implementation. Laboratory packages should
contain all the information and materials required to replicate an
experiment or case study [37,38]. The content of an LP should not be
static; it needs to be adapted to the needs of the researcher and the
limitations of the experiment. In order to develop a correct LP, we
suggest that the proposal put forward by Jedlitschka and D. Pfahl [37,
38] be followed, in which the content and structure of the laboratory
packages for software engineering experiments are indicated. Consid
ering the indications of these authors, the LP should include the
following information:

• Planning: description of each of the activities to be carried out, and
the order in which they are to be performed. It is also recommended
that the estimated workload for the replicant experimenter be
indicated.

• Study conception: description of the high-level attributes that are
studied by the experiment, together with its goals. In addition, the
variables used in the experiment should be shown.

• Experimental design: information about the design of the experiment.
It should include details on what the subject of the evaluation will be
and in what cases.

• Operation: information for the creation of the laboratory environ
ment to be used. This includes specific software engineering objects
(such as programs, specifications, or test cases) and instruments used
for measurement and analysis of the data.

• Analysis: specification of the data wrangling process followed, as well
as the analysis methods applied. A report of the experiment should be
included, and the analysis should conclude with a high-level inter
pretation of the results. In addition, the raw data should be included
in standard format, to allow other researchers to repeat all the
analysis activities of the results.

The last activity of the process for the measurement of the energy
efficiency of the software is to make detailed documentation, in which
the whole process is explained, along with the results obtained in the
study (Activity A7.2). The main difference with the laboratory package
is that while that is oriented to other researchers who want to replicate
the experiment, the documentation here, containing the information
that has been obtained, is directed at the Client and other stakeholders.
The LP can be considered as a piece of this documentation. To report a
study where we evaluate the energy consumption of the software, we
can use the guidelines proposed by Jedlitschka and Pfahl [39].

Table 9 shows the roles that have participated in this phase, along
with the involvement of each role in each activity using the SPEM
relationship levels. Table 8

Roles and their responsibilities in Phase VI.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A6.1 Calculate the
energy
consumption by
the Software
Entity

PP

A6.2 State
conclusions about
the Software
Entity’s energy
consumption data

AP PP

Fig. 8. Phase VII. Reporting the results.

Table 9
Roles and their responsibilities in Phase VII.

Roles Activities Client
(C)

Measurement
Analyst (MA)

Measurement
Performer (MP)

Data
Analyst
(DA)

A7.1 Carry out
the laboratory
package

PP AP AP

A7.2 Document
the case study

PP

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

10

3.3. Considerations for the validity of energy consumption measurements
of software

Although the process described above provides a solid basis for
carrying out energy consumption measurements, the assumptions that
may occur, and which could jeopardise the validity of the measure
ments, must be identified. Table 10 shows the assumptions that can
threaten the validity of energy consumption measurements of software.

4. Application of the software energy consumption
measurement process

This section presents the application of the process for evaluating the
energy efficiency of the software, which was defined in the previous
section. To demonstrate that this process can be adapted to any study in
which energy consumption is evaluated, two case studies are presented.
In the first (Case Study A), a hardware device was used to make accurate
and real consumption measurements. In the second (Case Study B), so as
to illustrate a software-based approach, we adapted to our process the
case study performed by Chandra et al. [41].

4.1. Case study A: using a hardware device to measure energy
consumption

In this case study, a hardware device is used, which allows us to
obtain accurate and real measurements. The activities that have been
carried out following the process are detailed below:

• Phase I. Scope definition:

The objective of this case study is to find out how software changes
can alter the energy consumption behaviour of the software. With this
feedback, when we then develop a new version of the software we will
be able to avoid carrying out the changes that have had the most
negative impact on the software’s energy consumption (Activity A1.1).

The first step is to select the Software Entity class to be analysed in
the case study (Activity A1.2). In this case, we chose Apache Hadoop,
which is a framework that enables [evenly] distributed storage and the
processing of large data sets.

The next step is to choose the individual Software Entities to be
measured (Activity A1.3). These software products must be available for
installation and execution, and the source code must be accessible if the
changes are to be analysed. In addition, the selected Software Entities
must all include at least the same functionality. Given these criteria, we
will analyse the energy consumption of the three different versions of
Apache Hadoop shown in Table 11.

The last activity to be carried out in this phase is the creation of the
test cases to be executed (Activity A1.4). In this case study, one of the
test cases uses the Hadoop Distributed File System (HDFS) and the other
does not. These two test cases defined are detailed below:

• Estimation of the Pi number: this test case runs a REDUCE program for
maps that estimates Pi using a quasi-Monte Carlo method. The pro
gram takes two inputs: the number of maps and the number of
samples. We run with 50 maps and 5000 samples per map.

• Count the words of the novel “Don Quixote of La Mancha”: this algo
rithm counts the number of times each different word appears in the
famous novel, using Hadoop’s HDFS.

The outcome of this phase is that we have now defined the test cases
that are to be executed in each of the selected Hadoop versions, in order
to analyse if the changes in each of the versions have affected the power
consumption.

• Phase II. Measurement Environment Setting:

The measurement environment we used to evaluate the energy ef
ficiency of the software is FEETINGS (Framework for Energy Efficiency
Testing to Improve eNviromental Goals of the Software) [13], a frame
work for measuring and analysing the energy consumption of a software
application. FEETINGS consists of two main elements: (i) EET, which is a
device that allows the energy consumption of a set of hardware com
ponents to be measured when a Software Entity is executed in the DUT
(Device Under Test); and (ii) ELLIOT, which is the software application
that processes and analyses the data collected by EET (Activity A2.1).

We also used the SonarCloud platform, to be able to establish what
changes the software may have undergone between its different ver
sions, as selected in Phase I; this platform is a cloud service for the
continuous inspection of the quality of the code, providing detailed

Table 10
Considerations for the validity of energy consumption measurements.

ID Name Description

C.1 Sampling interval The frequency with which samples of the power
consumed are provided must be taken into
consideration. If the frequency is too low, this
might lead to an underestimation of the energy
consumed, due to the high frequency of the
hardware components [33]

C.2 OS effects and interaction
with other software

The energy used by the operating system (OS) is
usually included in the energy consumption
measurements. In addition, other applications
or services of the operating system may be
activated during the measurement. We mitigate
this threat by performing a large number of
measurements and by obtaining the baseline of
DUT consumption.

C.3 Laboratory temperature Not having direct control over the temperature
in the laboratory where measurements are
performed can be harmful to measuring
accurate energy consumption. This risk can be
mitigated by repeating the measurements
several times [40].

C.4 Experiment settings The choice of the Software Entity to be
analysed, together with the creation of the test
cases to be run to measure energy consumption,
can be considered a limitation of the
experiment. Hence, we cannot generalise the
results obtained for other Software Entities,
although they may be useful for future
experiments.

C.5 Measuring instrument There is an inevitable dependence on the
measuring instrument in terms of accuracy and
detail of measurements, as these may vary
when a different measuring instrument is used.
However, whenever possible it is useful to
provide comparisons about different
instruments by clearly stating their settings.

C.6 DUT Specificity One of the main factors that can influence
energy consumption measurements is the
configuration of the DUT in which the software
being evaluated is running, since the energy
consumption obtained is specific to the DUT
used. It is therefore possible to use the results as
absolute values, if the DUT used is too similar to
the one where the software will normally be
run. Otherwise, the values obtained must be
considered relative, and should serve to
determine in which test cases there is a greater
or lesser consumption of energy

Table 11
Selected software entities in case study A.

Versions Last Modified

Apache Hadoop 2.2 Nov. – 14
Apache Hadoop 2.6.5 Oct. – 16
Apache Hadoop 3.0.3 Jun. – 18

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

11

information on software maintainability measurements.
The chosen Software Entities will be executed in a DUT without any

special processing or storage capabilities, so that the results obtained are
of more general application (Activity A2.2). The specifications of the
DUT are provided in Table 12.

Concerning the set of measures to be used in this case study, we can
identify not only the energy consumption obtained by the measuring
instrument, but also the measurements obtained from the use of the
SonarCloud tool, such as the Total Lines of Code (TLOC), the Cyclomatic
Complexity (CC), the Percentage of Comments in the Code (PCC), and
the Percentage of Duplicate Code lines (PDC) (Activity A2.3).

In this case study it was not necessary to obtain the basal power
consumption of the DUT, since our goal was to perform a classification
of the different versions of Apache Hadoop based on consumption.
Moreover, all scenarios were to be executed in the same DUT, so it was
not necessary to isolate the power consumption of the operating system,
as this consumption would be the same in all executions, hence, there
would be no distortion of the classification obtained - as it would affect
all results equally.

• Phase III. Measurement Environment Preparation:

Before starting this phase, we checked that no other software was
running in the background. Any process or software not related to the
Software Entity to be analysed must be closed (Activity A3.1).

Another aspect to be defined in this phase is the number of repeti
tions to be performed for each measurement of a test case (Activity
A3.2). We consider that each test case should be measured 20 times,
since the fact of being in a controlled environment is enough to mitigate
the effect of any other processes that could be executed at the same time.

Once it has been checked, the DUT is configured and the chosen
Software Entity is installed (Activity A3.3). Apache Hadoop can be set on
a single machine, called a Single Node or Pseudo-Distributed Cluster,
(since it simulates a complete cluster environment for testing Hadoop
applications, using its HDFS module, which is a distributed file system
that provides high-performance access to application data). Alterna
tively, Apache Hadoop can be run on different machines in a distributed
manner, which is known as a Multi-Node or Fully Distributed Cluster. In
our case study, to carry out real measurements of energy consumption,
we have chosen to configure it on a single machine (Pseudo-Distributed
Cluster).

• Phase IV. Perform the Measurements:

In this phase, power consumption measurements will be made for
each of the Apache Hadoop test cases defined (Activity A4.1). The
measuring instrument used is the EET device. This measuring instru
ment provides information on the power consumption of the following
hardware components of the DUT: processor, hard disk, graphics card
and the DUT as a whole.

After the execution of each test case, the results of the energy mea
surement are recorded in a log file, see Fig. 9 (Activity A4.2).

• Phase V. Test Case Data Analysis:

During this phase, the analysis of the energy consumption data for
each of the test cases is carried out, using the ELLIOT analysis tool. The

first activity is the preparation of the raw data, which has been obtained
from the EET device in the previous phase. Here, the average values of
each of the measurements of the Apache Hadoop test cases are calcu
lated, the outliers are identified and eliminated, and the obtained values
are checked for validity (Activity A5.1).

Once the data have been processed and prepared, the descriptive
statistics of the values obtained are calculated (Activity A5.2), as can be
seen in Fig. 10.

• Phase VI. Software Entity Data Analysis:

In this phase, the results obtained for each of the Software Entities
analysed (versions of Apache Hadoop) are compared (Activity A6.1). As
we can see in Fig. 11, in both the test cases, the power consumption
increases in the most recent versions.

With the results of energy consumption obtained, the next step is to
analyse the differences that exist between each of the versions, seeking
to determine why the consumption increases in the newest versions of
the software (Activity A6.2).

• Phase VII. Reporting the results:

Finally, all the results obtained, along with the process followed to
achieve them, are documented (Activity A7.1). In addition, the labora
tory package1 of the experiment is created, so that it can be analysed and
replicated by other researchers (Activity A7.2). The LP includes all the
raw data obtained from EET and the information processed by the
ELLIOT tool. Also attached are the templates, filled in with the infor
mation from the study that has been performed.

4.2. Case study B: using a software tool to estimate energy consumption

In this case study, the energy efficiency evaluation process will be
adapted to the experiment presented by Chandra et al. [41], whose
objective is to evaluate the energy efficiency of programming languages,
using a software tool to estimate energy consumption.

Our purpose is to demonstrate that the process is valid for energy
consumption analysis experiments, regardless of the measurement
approach followed. Below we detail the activities carried out in each
phase, using information provided by the authors of the paper [41].

• Phase I. Scope definition:

The main goal of this experiment is to find out which programming
language consumes the least amount of energy (Activity A1.1 and A1.2).
For this purpose, the authors of this experiment focused on analysing the
power consumption of three standard programming languages: Visual
Basic, Java and C#.Net. These programming languages are the Software
Entities that they selected for evaluation (Activity A1.3).

They then defined the test cases that would be executed to evaluate
the Software Entities (Activity A1.4). As test cases, they implemented
four sorting algorithms (Bubble sort, Insertion sort, Selection sort and
Quicksort) in the different programming languages. Fig. 12 shows an
excerpt of the template used for the definition of the test cases to be
evaluated.

• Phase II. Measurement Environment Setting:

The measuring instrument used is the Joulemeter tool (Activity A2.1)
[42]. This software tool allows the power consumption (in Watts/s) of a
system to be estimated when it is running a software application. The
sorting algorithms implemented in the three programming languages
were executed in the DUT with these specifications: Intel Core i5 and 4th

Table 12
Specifications of the DUT used in case study A.

Hardware Motherboard: Asus M2N-SLI Delux
Processor: AMD Athom x2 6000+
HDD: Seagate BarraCuda 7200 rpm 500 GB
RAM: 4×1 GB 666 MHz Kingston
Graphics Cards: Nvidia GForce 8600 GTS

Operating system Xubuntu 16.04.2 LTS 1 https://zenodo.org/record/3669902#.XkpanS1DlhE

J. Mancebo et al.

https://zenodo.org/record/3669902#.XkpanS1DlhE

Information and Software Technology 134 (2021) 106560

12

generation CPU with Windows 8.1 (Activity A2.2). The baseline energy
consumption of the DUT was not considered in this experiment. Fig. 13
presents the definition of the measurement environment, including the

Fig. 9. Excerpt of a log file of Apache Hadoop’s energy measurement generated by the EET device.

Fig. 10. Data analysis of a test case with ELLIOT tool.

Fig. 11. Total energy consumed by each version of Apache Hadoop.

Fig. 12. Excerpt from the template for defining the test cases.

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

13

information about the measuring instrument, the DUT and the recorded
measurement (Activity A2.3).

• Phase III. Measurement Environment Preparation:

The researchers decided that the consumption measurements of each
algorithm in each of the languages should be executed four times on the
same data set (Activity A3.2).

They implemented the four sorting algorithms in the three pro
gramming languages. They then prepared a set of elements with more
than sixty thousand data, both integers and doubles. The algorithms had
to sort this data set (Activity A3.3).

• Phase IV. Perform the Measurements:

They performed four tests with the same data set and took their
average; the aim was to find the average power consumption per second
in each programming language for all the ranking algorithms defined
above (Activity A4.1 and A4.2).

• Phase V & VI. Data Analysis:

Once each of the algorithms had been measured, the values were
calculated based on the power consumption represented in watts per
second (Activity A5.2 and A6.1). It was found that the most efficient
sorting algorithm, in terms of energy, is Quicksort, followed by Bubble
sort. In contrast, the most energy-demanding algorithm is the Insertion
sort. To implement these sorting algorithms, the most energy-inefficient
programming language is Visual Basic. However, with Java and C#.Net
implementations the results are more similar. Moreover, the classifica
tion of double-type data elements consumes more power than the
integer type data set (Activity A6.2).

• Phase VII. Reporting the results:

The researchers reported the results found in their paper [41] (Ac
tivity A7.2) (Fig. 14). However, the authors did not indicate whether
they had a laboratory package that would enable the experiment to be
replicated.

5. Conclusions and future work

The development of environmentally friendly software is no trivial
project. And, in order to determine how efficient software is from an
energy point of view, it is essential to be able to evaluate the energy
consumed when it is running. However, simply having measuring in
struments that allow us to fully analyse consumption may not in itself be
enough. To ensure that the results obtained are correct and appropriate
it is imperative to follow the correct steps. This has inspired us to pre
sent, in this paper, our proposal for a process to evaluate the energy
efficiency of software. By the process we propose it is possible to
improve reliability and consistency when measuring energy consump
tion. To support the systematic development, management and growth
of our proposed process by using a standardized representation, we have
chosen to use SPEM 2.0; this has also allowed us to generate docu
mentation in a standard format that is available to anyone who wants to
consult it on the web. This process covers all the necessary phases in
carrying out this type of studies, from the definition of the scope and
configuration of the environment, through the performance of the
measurements, to the subsequent analysis of the data obtained and the
reporting of the results. Furthermore, this process was designed to be
valid with any measuring instrument used, regardless of whether it
follows the hardware-based or software-based approach. The phases of
the process are based on the grouping of the different activities defined
in the Green Mining Methodology. Moreover, to define some aspects or
artefacts of the process, we have based ourselves on well-known ap
proaches to software measurement and good practices related to green
software proposed by other authors.

To illustrate this process, we have provided two examples of how to
use the defined process to achieve more reliable software energy con
sumption results, one of them using a measuring instrument following
the hardware-based approach, and another using an estimation software
tool. The process is therefore shown to be applicable to both cases.

The process defined allows us to analyse the energy efficiency of
software, and so enables researchers to obtain greater control over the
measurements made, guaranteeing the reliability and consistency of the
same. It also means that the studies we carried out can be easily repli
cated and the results obtained can be compared with those of other
studies.

This contribution, we believe, helps software professionals to be
aware that there are processes and tools to evaluate the energy efficiency
of the software applications they develop. They can thus develop soft
ware that is environmentally friendly.

If we analyse the impact that the defined process can have on the
environment in the software life cycle with regards to the three order
effects defined in [43], we can conclude that the proposed process is
mainly related to second-order or indirect effects, which are the effects
arising from the usage of software. This is because the defined process

Fig. 13. Template for definition of the measurement environment.

Fig. 14. Power consumed measurement.

J. Mancebo et al.

Information and Software Technology 134 (2021) 106560

14

allows to evaluate and measure the energy consumed by a software
when it is running. The process also has some influence on the direct or
first-order effects of software, since it can be applied to measure the
energy consumed by the tools involved in the design and production of
software. Finally, our process may involve third-order effects to improve
the software as a result of a maintenance task.

As future work, our proposed process will be validated through more
studies conducted in real environments, thereby allowing us to improve
the process and the activities to be carried out. In addition, the process
will be improved by a more detailed definition of all activities and ar
tefacts. In addition, the process will be completed with new guidelines
that will make it easier for researchers to apply the process in their
energy consumption measurements.

CRediT authorship contribution statement

Javier Mancebo: Conceptualization, Visualization, Validation,
Investigation, Writing - original draft. Félix García: Conceptualization,
Writing - review & editing, Supervision. Coral Calero: Conceptualiza
tion, Methodology, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was part of the BIZDEVOPS-Global (RTI2018-098309-B-
C31), supported by the Spanish Ministry of Economy, Industry and
Competitiveness and European FEDER funds, and was also part of the
SOS project (No. SBPLY/17/180501/000364), funded by the Depart
ment of Education, Culture and Sports of the Directorate General of
Universities, Research and Innovation of the JCCM (Regional Govern
ment of the Autonomous Region of Castilla-La Mancha).

References

[1] A. Andrae, Total consumer power consumption forecast, Nordic Digital Bus.
Summit 10 (2017).

[2] A. Andrae, Prediction studies of electricity use of global computing in 2030, Int. J.
Sci. Eng. Invest. 8 (2019) 27–33.

[3] J. Vidal, Tsunami of data’could consume one fifth of global electricity by 2025,
Climate Home News 11 (2017).

[4] A.C. Moises, A. Malucelli, S. Reinehr, Practices of energy consumption for
sustainable software engineering, in: 2018 Ninth International Green and
Sustainable Computing Conference (IGSC), IEEE, 2018, pp. 1–6.

[5] G. Procaccianti, P. Lago, S. Bevini, A systematic literature review on energy
efficiency in cloud software architectures, Sustain. Comput.: Inform. Syst. 7 (2015)
2–10.

[6] C. Calero, et al., 5Ws of green and sustainable software, Tsinghua Sci. Technol. 25
(3) (2019) 401–414.

[7] C. Calero, M. Piattini, Puzzling out software sustainability, Sustain. Comput.:
Inform. Syst. 16 (2017) 117–124.

[8] M. Dick, S. Naumann, N. Kuhn, A model and selected instances of green and
sustainable software. What Kind of Information Society? Governance, Virtuality,
Surveillance, Sustainability, Resilience, Springer, 2010, pp. 248–259.

[9] T.A. Ghaleb, Software energy measurement at different levels of granularity, in:
2019 International Conference on Computer and Information Sciences (ICCIS),
IEEE, 2019, pp. 1–6.

[10] G. Pinto, F. Castor, Energy efficiency: a new concern for application software
developers, Commun. ACM 60 (12) (2017) 68–75.

[11] A. Bourdon, A. Noureddine, R. Rouvoy, L. Seinturier, Powerapi: a software library
to monitor the energy consumed at the process-level, ERCIM News 2013 (92)
(2013).

[12] E. Jagroep, J.M.E. van der Werf, S. Jansen, M. Ferreira, J. Visser, Profiling energy
profilers, in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 2198–2203.

[13] J. Mancebo, et al., EET: a device to support the measurement of software
consumption, in: Proceedings of the 6th International Workshop on Green and
Sustainable Software, 2018, pp. 16–22.

[14] E.A. Jagroep, et al., Software energy profiling: comparing releases of a software
product, in: Proceedings of the 38th International Conference on Software
Engineering Companion, ACM, 2016, pp. 523–532.

[15] C. Sahin, et al., Initial explorations on design pattern energy usage, in: 2012 First
International Workshop on Green and Sustainable Software (GREENS), IEEE, 2012,
pp. 55–61.

[16] A. Hindle, Green mining: a methodology of relating software change and
configuration to power consumption, Empir. Software Eng. 20 (2) (2015) 374–409.

[17] E. Kern, et al., Sustainable software products—towards assessment criteria for
resource and energy efficiency, Future Gen. Comput. Syst. 86 (2018) 199–210.

[18] A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier, A preliminary study of the
impact of software engineering on greenit, in: 2012 First International Workshop
on Green and Sustainable Software (GREENS), IEEE, 2012, pp. 21–27.

[19] C. Wohlin, et al., Experimentation in Software Engineering, Springer Science &
Business Media, 2012.

[20] N. Fenton, J. Bieman, Software Metrics: a Rigorous and Practical Approach, CRC
press, 2014.

[21] B. Henderson-Sellers, Method engineering for OO systems development, Commun.
ACM 46 (10) (2003) 73–78.

[22] Software & Systems Process Engineering Metamodel specification (SPEM) Version
2.0, 2008.

[23] V.R. Basili, D.M. Weiss, A methodology for collecting valid software engineering
data, IEEE Trans. Softw. Eng. (6) (1984) 728–738.

[24] V.R. Basili, H.D. Rombach, The TAME project: Towards improvement-oriented
software environments, IEEE Trans. Softw. Eng. 14 (6) (1988) 758–773.

[25] G. Caldiera, V.R. Basili, H.D. Rombach, Goal question metric paradigm,
Encyclopedia Software Eng. 1 (1994) 528–532.

[26] D.R. van Solingen, E.W. Berghout, The Goal/Question/Metric Method: a Practical
Guide for Quality Improvement of Software Development, McGraw-Hill, 1999.

[27] R.E. Park, W.B. Goethert, W.A. Florac, Goal-Driven Software Measurement. a
Guidebook, Carnegie-Mellon Univ Pittsburgh, 1996.

[28] W. Goethert and J. Siviy, "Applications of the Indicator Template for Measurement
and Analysis," Carnegie-Mellon Univ Pittsburgh PA Software Engineering
INST2004.

[29] PSM: Practical Software and Systems Measurement, A Foundation for Objective
Project Management, 2000.

[30] ISO/IEC/IEEE International Standard - Systems and Software
Engineering–Measurement Process, 2017, ISO/IEC/IEEE 15939, 2017, pp. 1–49.

[31] F. García, et al., Effective use of ontologies in software measurement, Knowl. Eng.
Rev. 24 (1) (2009) 23–40.

[32] J. 200:2012, The International Vocabulary of Metrology—Basic and General
Concepts and Associated Terms (VIM), 2012. Available, http://www.bipm.
org/vim.

[33] E. Jagroep, et al., Energy efficiency on the product roadmap: an empirical study
across releases of a software product, J. Software: Evol. Process 29 (2) (2017)
e1852.

[34] S. Kandel, et al., Research directions in data wrangling: visualizations and
transformations for usable and credible data, Inf. Visualization 10 (4) (2011)
271–288.

[35] B. Kitchenham, et al., Robust statistical methods for empirical software
engineering, Empir. Software Eng. 22 (2) (2017) 579–630.

[36] R.R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, Academic
press, 2011.

[37] V.R. Basili, R.W. Selby, D.H. Hutchens, Experimentation in software engineering,
IEEE Trans. Softw. Eng. (7) (1986) 733–743.

[38] A. Brooks, J. Daly, J. Miller, M. Roper, M. Wood, Replication of experimental
results in software engineering, in: International Software Engineering Research
Network (ISERN), 2, University of Strathclyde, 1996. Technical Report ISERN-96-
10.

[39] A. Jedlitschka, D. Pfahl, Reporting guidelines for controlled experiments in
software engineering, in: 2005 International Symposium on Empirical Software
Engineering 2005, IEEE, 2005, 10 pp.

[40] S. Chowdhury, S. Borle, S. Romansky, A. Hindle, Greenscaler: training software
energy models with automatic test generation, Empir. Software Eng. 24 (4) (2019)
1649–1692.

[41] T.B. Chandra, P. Verma, A.K. Dwivedi, Impact of programming languages on
energy consumption for sorting algorithms. Software Engineering, Springer, 2019,
pp. 93–101.

[42] N. Kothari, A. Bhattacharya, Joulemeter: virtual machine power measurement and
management, MSR Tech. Rep. (2009).

[43] C. Becker, et al., The Karlskrona Manifesto for Sustainability Design, 2014 arXiv
preprint arXiv:1410.6968.

J. Mancebo et al.

http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0031
http://www.bipm.org/vim
http://www.bipm.org/vim
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00044-6/sbref0043

Information and Software Technology 134 (2021) 106560

15

Javier Mancebo is a Ph.D. in Computer Science at the Uni
versity of Castilla-La Mancha. His research interests are soft
ware sustainability and business process management. He is a
member of the Alarcos Research Group. He holds the following
professional certifications: PMP, CISA, ITIL Foundation and
Scrum Manager.

Félix Garcia is Professor in the Department of Information
Technologies and Systems at the UCLM. He is a member of the
Alarcos Research Group and his research interests include
business process management, software processes and software
measurement. He holds the following professional certifica
tions: PMP, CISA and Scrum Manager.

Coral Calero is Professor in the Department of Information
Technologies and Systems at the University of Castilla-La
Mancha (Spain). She holds PMP certification. Her research
interests include software quality, software quality models,
software measurement and software sustainability. She is a
member of the Alarcos Research Group.

J. Mancebo et al.

	A process for analysing the energy efficiency of software
	1 Introduction
	2 Related work
	2.1 Measurement methodologies and standards
	2.2 Energy measurement methodologies
	2.3 Comparison of measurement methodologies

	3 Process for analysing the energy efficiency of the software
	3.1 Roles
	3.2 Phases
	3.2.1 Phase I: scope definition
	3.2.2 Phase II: measurement environment setting
	3.2.3 Phase III: measurement environment preparation
	3.2.4 Phase IV: perform the measurements
	3.2.5 Phase V: test case data analysis
	3.2.6 Phase VI: software entity data analysis
	3.2.7 Phase VII: reporting the results

	3.3 Considerations for the validity of energy consumption measurements of software

	4 Application of the software energy consumption measurement process
	4.1 Case study A: using a hardware device to measure energy consumption
	4.2 Case study B: using a software tool to estimate energy consumption

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

